第81天:NumPy Ndarray_Object&NumPy_Data_Type

上一篇文章中我们详细介绍了 NumPy 的功能及用途,本章节着重介绍 NumPy 一个神奇的对象 Ndarray 以及 NumPy 数据类型,包括两者的用途,接下来就开启神奇之旅吧。

标准安装的 Python 中用列表 (list) 保存一组值,它可以用来当作数组使用,不过由于列表的元素可以是任何对象,因此列表中所保存的是对象的指针。这样为了保存一个简单的[1,2,3],需要有3个指针和三个整数对象。对于数值运算来说这种结构显然比较浪费内存和CPU计算时间。

此外 Python 还提供了一个array模块,array对象和列表不同,它直接保存数值,和C语言的一维数组比较类似。但是由于它不支持多维,也没有各种运算函数,因此也不适合做数值运算。

NumPy 的诞生弥补了这些不足,NumPy提供了两种基本的对象:ndarray(N-dimensional array object)和 ufunc(universal function object)。ndarray (下文统一称之为数组)是存储单一数据类型的多维数组,而 ufunc 则是能够对数组进行处理的函数。

一、NumPy Ndarray 对象

NumPy 最重要的一个特点是其 N 维数组对象 ndarray,Ndarray 从名字组成上看是 Nd-array,顾名思义就是 N 维数组的意思,它是一系列多维且同类型数据的集合,以 下标为 0 开始进行集合中元素的索引。ndarray 是内存存储,换言之 ndarray 对象由计算机内存的连续一部分组成,并结合索引模式,将每个元素映射到内存块中的一个位置,它比列表存储节省空间

  • ndarray 对象是用于存放同类型元素的多维数组。
  • ndarray 中的每个元素在内存中都有相同存储大小的区域。

1、ndarray 内部内容组成

  • 一个指向数据(内存或内存映射文件中的一块数据)的指针。
  • 数据类型或 dtype,描述在数组中的固定大小值的格子。
  • 一个表示数组形状(shape)的元组,表示各维度大小的元组。
  • 一个跨度元组(stride),其中的整数指的是为了前进到当前维度下一个元素需要”跨过”的字节数。

2、ndarray 的内部结构

ndarray 内部结构

3、创建 ndarray

1
2
3
4
5
6
7
from numpy import *
eye(4)
Out[3]: 
array([[1., 0., 0., 0.],
       [0., 1., 0., 0.],
       [0., 0., 1., 0.],
       [0., 0., 0., 1.]])

由以上实例可知,创建一个 ndarray 只需调用 NumPy 的 array 函数即可,如下:

1
2
numpy.array(object, dtype = None, copy = True, order = None, subok = False, ndmin = 0)

3.1 参数说明

名称 描述
object 数组或嵌套的数列
dtype 数组元素的数据类型,可选
copy 对象是否需要复制,可选
order 创建数组的样式,C为行方向,F为列方向,A为任意方向(默认)
subok 默认返回一个与基类类型一致的数组
ndmin 指定生成数组的最小维度

值得注意的是:ndmin 默认为数值为 0

3.2 运用实例

创建一个简单的 ndarray 对象,单维数组

1
2
3
import numpy as np 
a = np.array([1,2,3])  
print (a)

输出结果如下:

1
[1 2 3]

创建一个大于 1 维的数组

1
2
3
import numpy as np 
a = np.array([[1,  2],  [3,  4]])  
print (a)

输出结果如下:

1
2
[[1 2]
 [3 4]]

使用最小维度参数指定维度

以下实例指定数组维度为 2 维,ndmin 默认维度是 0

1
2
3
import numpy as np 
a = np.array([1,  2,  3,4,5], ndmin =  2)  
print (a)

输出结果为:

1
[[1, 2, 3, 4, 5]]

使用 dtype 参数指定数组元素的数据类型

1
2
3
1
2
3
import numpy as np 
a = np.array([1,  2,  3], dtype = complex)  
print (a)

输出结果:

1
2
[1.+0.j 2.+0.j 3.+0.j]

二、NumPy 数据类型

NumPy 支持的数据类型比 Python 内置的类型要更多,基本上可以和 C 语言的数据类型对应上,其中部分类型对应为 Python 内置的类型。

1、NumPy 常用数据类型

下表列举了 NumPy 常用基本数据类型,为了区别于 Python 原生的数据类型,bool、int、float、complex、str 等类型名称末尾都加了 _。

名称 描述
bool_ 布尔型数据类型(True 或者 False)
int_ 默认的整数类型(类似于 C 语言中的 long,int32 或 int64)
intc 与 C 的 int 类型一样,一般是 int32 或 int 64
intp 用于索引的整数类型(类似于 C 的 ssize_t,一般情况下仍然是 int32 或 int64)
int8 字节(-128 to 127)
int16 整数(-32768 to 32767)
int32 整数(-2147483648 to 2147483647)
int64 整数(-9223372036854775808 to 9223372036854775807)
uint8 无符号整数(0 to 255)
uint16 无符号整数(0 to 65535)
uint32 无符号整数(0 to 4294967295)
uint64 无符号整数(0 to 18446744073709551615)
float_ float64 类型的简写
float16 半精度浮点数,包括:1 个符号位,5 个指数位,10 个尾数位
float32 单精度浮点数,包括:1 个符号位,8 个指数位,23 个尾数位
float64 双精度浮点数,包括:1 个符号位,11 个指数位,52 个尾数位
complex_ complex128 类型的简写,即 128 位复数
complex64 复数,表示双 32 位浮点数(实数部分和虚数部分)
complex128 复数,表示双 64 位浮点数(实数部分和虚数部分)

另外 numpy 的数值类型实际上是 dtype 对象的实例,并对应唯一的字符,包括 np.bool_,np.int32,np.float32,等等。

2、数据类型对象-dtype

数据类型对象是用来描述与数组对应的内存区域如何使用,这依赖如下几个方面:

  • 数据的类型(整数,浮点数或者 Python 对象)
  • 数据的大小(例如, 整数使用多少个字节存储)
  • 数据的字节顺序(小端法或大端法)
  • 在结构化类型的情况下,字段的名称、每个字段的数据类型和每个字段所取的内存块的部分
  • 如果数据类型是子数组,它的形状和数据类型

字节顺序是通过对数据类型预先设定”<”或”>”来决定的。”<”意味着小端法(最小值存储在最小的地址,即低位组放在最前面)。”>”意味着大端法(最重要的字节存储在最小的地址,即高位组放在最前面)。

dtype 对象是使用以下语法构造的:

1
numpy.dtype(object, align, copy)
  • object - 要转换为的数据类型对象
  • align - 如果为 true,填充字段使其类似 C 的结构体。
  • copy - 复制 dtype 对象 ,如果为 false,则是对内置数据类型对象的引用

实例操作:

实例 1

1
2
3
4
import numpy as np
# 使用标量类型
da = np.array([1, 2, 3])
print(da.dtype)

输出结果为:

1
1
int32

实例 2

1
2
3
4
import numpy as np
# int8, int16, int32, int64 四种数据类型可以使用字符串 'i1', 'i2','i4','i8' 代替
dt = np.dtype('i4')
print(dt)

输出结果为:

1
1
int32

3、结构化数据类型的运用

结构化数据类型的使用,类型字段和对应的实际类型将被创建

实例1:创建年龄数组并且应用于 ndarray 对象

1)创建一个结构化数据类型
1
2
3
4
5
6
da = np.dtype(np.int64)
print(da)

# 创建
dt = np.dtype([('age',np.int8)])
print(dt)

输出结果为:

1
2
int64
[('age', 'i1')]
2)将结构化数据类型应用于ndarray 对象
1
2
3
dt = np.dtype([('age',np.int8)]) 
a = np.array([(10,),(20,),(30,)], dtype = dt) 
print(a)

输出结果为:

1
[(10,) (20,) (30,)]
3) 类型字段名可以用于存取实际的 age 列
1
2
3
dt = np.dtype([('age',np.int8)]) 
a = np.array([(10,),(20,),(30,)], dtype = dt) 
print(a['age'])

输出结果为:

1
[10 20 30]

实例2:定义一个结构化数据类型 student,包含字符串字段 name,整数字段 age,及浮点字段 marks,并将这个 dtype 应用到 ndarray 对象。

1) 创建数组
1
2
student = np.dtype([('name','S20'), ('age', 'i1'), ('marks', 'f4')]) 
print(student)

输出结果:

1
[('name', 'S20'), ('age', 'i1'), ('marks', '<f4')]
2) 将数组应用与 ndarray 对象
1
2
3
4
import numpy as np
student = np.dtype([('name','S20'), ('age', 'i1'), ('marks', 'f4')]) 
a = np.array([('abc', 21, 50),('xyz', 18, 75)], dtype = student) 
print(a)

输出结果为:

1
[(b'abc', 21, 50.) (b'xyz', 18, 75.)]

3.1 内建类型的字符代码如下:

字符 对应类型
b 布尔型
i (有符号) 整型
u 无符号整型 integer
f 浮点型
c 复数浮点型
m timedelta(时间间隔)
M datetime(日期时间)
O (Python) 对象
S, a (byte-)字符串
U Unicode
V 原始数据 (void)

3.2 NumPy 数据类型转换

numpy 数据类型转换需要调用方法 astype(),不能直接修改 dtype。调用 astype 返回数据类型修改后的数据,但是源数据的类型不会变,需要进一步对源数据的赋值操作才能改变。

实例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
da = np.array([1.2,1.1,1.0])
# 输出 da 的数据类型
print(da.dtype)
# 输出 float64

# 转换 da 的数据类型
print(da.astype(np.int32))
# 输出 [1 1 1]

# 重新查看数据类型,发现数据类型还未改变
print(da.dtype)
# 输出 float64

# 重新进行赋值操作
da = da.astype(np.int32)
print(da.dtype) 
# 输出int32

print(da)
# 输出 [1 1 1]

4、复数

我们把形如 z=a+bi(a, b均为实数)的数称为复数,其中 a 称为实部,b 称为虚部,i 称为虚数单位。

当虚部 b=0 时,复数 z 是实数;
当虚部 b!=0 时,复数 z 是虚数;
当虚部 b!=0,且实部 a=0 时,复数 z 是纯虚数。

实例:

1
2
3
1
2
3
import numpy as np 
a = np.array([1,  2,  3], dtype = complex)  
print (a)

输出:

1
[1.+0.j 2.+0.j 3.+0.j]

如上输出结果就是复数形式的数据类型

总结

本章节是对 NumPy Ndarray 对象及 NumPy 数据类型的用法作详细介绍,本文介绍的是 Ndarray 基础知识,等把 NumPy 所有知识点介绍完后会出一个项目实战那,更好的给运用 NumPy 相关知识点的友人们提供支撑。

参考

https://www.runoob.com/numpy/numpy-ndarray-object.html https://www.runoob.com/numpy/numpy-dtype.html

文中示例代码:python-100-days

Python Geek Tech wechat
欢迎订阅 Python 技术,这里分享关于 Python 的一切。