第116天:机器学习算法之朴素贝叶斯理论

朴素贝叶斯(Naive Bayesian Mode,NBM)

贝叶斯由来

贝叶斯是由英国学者托马斯·贝叶斯 提出的一种纳推理的理论,后来发展为一种系统的统计推断方法。被称为贝叶斯方法。

朴素贝叶斯

朴素贝叶斯法是基于贝叶斯定理特征条件独立假设的分类方法。优点是在数据较少的情况下仍然有效,可以处理多类别的问题。缺点是对于输入数据的装备方式较为敏感。适用于标称型的数据。

特征条件独立:假设 X 的 N 个特征在类确定的条件下都是条件独立的。这样大大简化了计算的复杂度,但是会牺牲一些准确性。

标称型数据:只在有限目标集中取值,比如真与假。

贝叶斯定理

条件概率就是指在事件 B 发生的情况下事件 A 发生的概率,用 P(A B) 表示,读作 “A 在 B 发生的条件下发生的概率”。

根据文氏图,可以看出在事件 B 发生的情况下,事件 A 发生的概率为 P(A∩B) 除以P(B)。

所以

同理可得

所以

得到

其中:

  1. P(A) 是 A 的先验概率或边缘概率,不考虑 B 的因素
  2. P(A B) 是已知 B 发生后 A 的条件概率,也称作 A 的后验概率。
  3. P(B A) 是已知 A 发生后 B 的条件概率,也称作 B 的后验概率,称作似然度。
  4. P(B) 是 B 的先验概率或边缘概率,称作标准化常量。
  5. P(B A)/P(B) 称作标准似然度。

示例1:桶中的石子

假设现在有 A 桶 和 B 桶两个桶,A 桶里面装有 4 块石子分别2 块黑色的石子和2块灰色的石子,B 桶里面装有 3 块石子分别为 2 块黑色石子和 1 块灰色石子,那么在这两个桶里面取出任意一个石子且都是灰色的,问这个灰色石子在 A 桶中被取出的概率是多少?

假设在 A 桶里面取出石子为事件 A,取出灰色石子为事件 B,在 A 桶中取出灰色石子的事件概率为 P(B A),则:P(A) = 4/7,P(B) = 3/7,P(B A) = 1/2,按照公式:
$$P(A B) = \frac{(4/7)}{(3/7)}*{(1/2)} = \frac{2}{3} $$  

所以,在两个桶里面取出任意一个石子且为灰色的,这个灰色石子在 A 桶被取出的概率为 2/3

示例2:根据天气情况判断是否出去游玩

在现实中我们经常按天气情况判断是否出去游玩,下面做成一个表格

天气 温度 湿度 风力 结果
多云
多云
多云
多云
多云
多云
小雨
小雨
小雨
小雨

现在有个朋友喊你出去游玩,但是天气是多云、温度较冷、湿度较低、风力强,判断一下是否出去游玩。

套用上面朴素贝叶斯公式 P(类别 特征) 为 P(是 多云、冷、低、弱) 和 P(类别 特征) = P(否 多云、冷、低、弱) 的概率。
如果 P(是 多云、冷、低、弱) > P(否 多云、冷、低、弱),则为出去游玩。
如果 P(是 多云、冷、低、弱) < P(否 多云、冷、低、弱),则为不出去游玩。

由朴素贝叶斯公式可知:

在朴素贝叶斯中,每个特征都是相互独立的,所以可以拆分成为

统计出去游玩的特征概率

下面就可以将特征一个一个统计计算

1.首先我们整理出去玩的样本,结果为是则出去游玩的样本如下,一共有 3 条数据

天气 温度 湿度 风力 结果
多云
多云
多云
小雨

P(是) = 4/10 = 2/5

2.当天气为多云出去游玩 P(多云 是) 的样本统计如下:
天气 温度 湿度 风力 结果
多云
多云
多云
P(多云 是) = 3/4
3.当温度为冷出去游玩 P(冷 是) 的样本统计如下:
天气 温度 湿度 风力 结果
多云
P(冷 是) = 1/4
4.当湿度为低出去游玩 P(低 是) 的样本统计如下
天气 温度 湿度 风力 结果
多云
多云
小雨
P(低 是) = 3/4
5.当风力为弱出去游玩 P(弱 是) 的样本统计如下
天气 温度 湿度 风力 结果
多云
P(弱 是) = 1/4

在这里已经统计出了 P(多云∣是)、P(冷∣是)、P(低∣是)、P(弱∣是)、P(是) 的概率,下面开始统计 P(多云)、P(冷)、P(低)、P(弱) 的概率

1.天气为多云 P(多云) 的样本统计一共有 6 条,概率则为 6/10。P(多云) = 6/10 = 3/5

2.温度为冷 P(冷) 的样本统计一共有 4 条,概率则为 4/10。P(冷) = 4/10 = 2/5

3.湿度为冷 P(低) 的样本统计一共有 4 条,概率则为 4/10。P(低) = 4/10 = 2/5

​4.风力为弱 P(弱) 的样本统计一共有 5 条,概率则为 1/2。P(弱) = 1/2

计算游玩概率

到这里已经统计出了 P(多云)、P(冷)、P(低)、P(弱) 的概率,把所有数值带入公式:

统计不出去游玩的特征概率

在是否出去游玩中计算了多云、冷、低、强的天气情况下出去游玩 P(是 多云、冷、低、弱) 的概率之后,还需要计算同样的天气情况下不出去游玩 P(否 多云、冷、低、弱)的概率,和上面使用同样的方法计算 P(多云 否)、P(冷 否)、P(低 否)、P(弱 否)*P(否) 的概率。

1.统计不出去游玩 P(否) 的概率,P(否) = 6/10 = 3/5

2.统计当天气为多云不出去游玩 P(多云 否) 的样本概率,P(多云 否) = 3/6 = 1/2
3.统计当温度为冷不出去游玩 P(冷 否) 的样本概率,P(冷 否) = 3/6 = 1/2
4.统计当湿度为低不出去游玩 P(低 否) 的样本概率,P(低 否) = 1/6
5.当风力为弱不出去游玩 P(弱 否) 的样本概率,P(弱 否) = 4/6 = 2/3

计算不游玩概率

上面计算了当不出去游玩是天气情况的概率,则把数值带入公式:

概率比较

很显然的结果:(3/4 * 1/4 * 3/4 * 1/4 * 2/5) / (3/5 * 2/5 * 2/5 * 1/2) < (1/2 * 1/2 * 1/6 * 2/3 * 3/5) / (3/5 * 2/5 * 2/5 * 1/2) 所以 P(是 多云、冷、低、弱) < P(否 多云、冷、低、弱)。

Python 实现

在 Python 中借助 pandas 模块和 numpy 模块可以实现计算朴素贝叶斯,在代码中需要做几件事情:

  1. 需要选择样本,如:示例2中的天气样本
  2. 计算每个类别的概率,这是先验概率
  3. 计算每个特征和类别同时发生的概率,这是后验概率
  4. 计算条件概率
  5. 比较特征出现在类别的概率
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

import pandas as pd
import numpy as np

class Nbm(object):

    def getSampleSet(self):
        dataSet = np.array(pd.read_csv('csv文件'))  #将数据转为数组
        featureData = dataSet[:, 0 : dataSet.shape[1] - 1] #取出特征
        labels = dataSet[:, dataSet.shape[1] - 1] #取出类别
        return featureData, labels


    def priori(self, labels):
        # 求出是和否的先验概率
        labels = list(labels)
        priori_ny = {}
        for label in labels:
            priori_ny[label] = labels.count(label) / float(len(labels)) # P = count(label) / count(labels)
        return priori_ny

    def feature_probability(self, priori_ny, features):
        # 求出特征概率:多云+是,多云+否,冷+是,冷+否同时发生的概率
        p_feature_ny = {}
        for ny in priori_ny.keys():
            ny_index = [i for i, label in enumerate(labels) if label == ny] # 是、否的下标
            for j in range(len(features)):
                f_index = [i for i, feature in enumerate(trainData[:, j]) if feature == features[j]] # 特征的下标
                xy_count = len(set(f_index) & set(ny_index)) # 类别和特征下标相同的长度
                pkey = str(features[j]) + '+' + str(ny)
                p_feature_ny[pkey] = xy_count / float(len(labels)) # 特征和类别同时发生的概率
        return p_feature_ny

    def conditional_probability(self, priori_ny, feature_probability, features):
        #求出条件概率
        P = {}
        for y in priori_ny.keys():
            for x in features:
                pkey = str(x) + '|' + str(y)
                P[pkey] = feature_probability[str(x) + '+' + str(y)] / float(priori_ny[y])  # P[X1/Y] = P[X1Y]/P[Y]
        return P

    def classify(self, priori_ny, feature_probability, features):


        #求条件概率
        p = self.conditional_probability(priori_ny, feature_probability, features)

        #求出[多云、冷、低、弱]所属类别
        f = {}
        for ny in priori_ny:
            f[ny] = priori_ny[ny]
            for x in features:
                f[ny] = f[ny] * p[str(x)+'|'+str(ny)]   #计算P(多云∣是)∗P(冷∣是)∗P(低∣是)∗P(弱∣是)∗P(是)

        return max(f, key=f.get)  #概率最大值对应的类别


if __name__ == '__main__':
    nbm = Nbm()
    features = ['多云', '冷', '低', '弱']
    trainData, labels = nbm.getSampleSet()
    priori_ny = nbm.priori(labels)

    feature_probability = nbm.feature_probability(priori_ny, features)

    result = nbm.classify(priori_ny, feature_probability, features)

    print(features, '的结果是', result)

总结

简单的介绍了朴素贝叶斯的一些概念,用了两个示例来增强朴素贝叶斯的学习,希望对大家有所帮助。

参考资料

《机器学习实战》

贝叶斯公式-百度百科

贝叶斯推断及其互联网应用-阮一峰

带你理解朴素贝叶斯分类算法

代码地址

示例代码:Python-100-days-day116

Python Geek Tech wechat
欢迎订阅 Python 技术,这里分享关于 Python 的一切。