有了这个方法,数据再多也不怕了

封面

假如我们需要处理一个文本文件,里面有 100万行数据,需要对每条数据做处理,比如将每行数据的数字做一个运算,放入到另一个文件里。

最简单的办法就是打开文件,逐行读取,每读取一行,对这一行做下处理,添加到目标文件中,再回来读取下一行。

这就是线性处理方式,假如处理一行数据需要 0.1 秒,那么用线性处理方式就需要:

10万秒,即大概 28个小时

显然对我们来说,这个时间有点长,有没用办法缩短呢?

当然有办法,那就是用 多线程 处理!

为什么呢?是因为多线程是提高效率,实现更有效程序的必然状态。

比如,需要处理大量的数据,需要响应多样的请求,需要与慢速的处理过程交互等等,都需要用到线程编程。

但是,线程这个概念不太好理解,用起来也总是不方便,而且容易出错,一方面是因为,我们的思路是线性的,另一方面是多线程本身有很多需要掌握的概念,学习理解难度比较高。

今天我将分享一下我在工作中是如何利用多线程技术,提速增效的。

对于前面那个例子,可以将原来的一个处理流程,分解为多个,例如之前的处理可以分解为:

读取行、做运算、存文件 三个自流程。

这样的话,相当于将只能一个人做的工作,可以让更多的人来做,从而形成类似的流水线效应,如图所示:

流水线

这是一张 CPU 处理指令的流水线示意图,可以看到在 t3 和 t4 的时间,四个工作在同时进行。

那么用多线程,就可以使我们的三个工作出现同时运行的状态,提升效率,比如先读取一行,然后再处理数据的同时,读取下一行,如此往复。

是不是感觉很好?

先别着急,首先需要解决一个问题 ——

如何避免重复读和跳读

重复读指的是一个以上线程读取到了同一条数据;

跳读指的是有些数据行没用任何线程处理。

这里介绍一个帮助我处理了很多多线程问题的方法,一个数据源类。

多线程数据源类

数据源类,就是将数据集中管理,然后以线程安全的方式为多线程程序提供数据。

注意: 并非最佳方法,但很实用

废话不多说,直接看代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import threading

class DataSource:
    def __init__(self, dataFileName, startLine=0, maxcount=None):
        self.dataFileName = dataFileName
        self.startLine = startLine  # 第一行行号为1
        self.line_index = startLine # 当前读取位置
        self.maxcount = maxcount  # 读取最大行数
        self.lock = threading.RLock() # 同步锁        

        self.__data__ = open(self.dataFileName, 'r', encoding= 'utf-8')
        for i in range(self.startLine):
            l = self.__data__.readline()

    def getLine(self):
        self.lock.acquire()
        try:
            if self.maxcount is None or self.line_index < (self.startLine + self.maxcount):
                line = self.__data__.readline()
                if line:
                    self.line_index += 1
                    return True, line
                else:
                    return False, None
            else:
                return False, None

        except Exception as e:
            return False, "处理出错:" + e.args
        finally:
            self.lock.release()
    
    def __del__(self):
        if not self.__data__.closed:
            self.__data__.close()
            print("关闭数据源:", self.dataFileName)
  • __init__ 初始化方法,接受 3 个参数
    • dataFileName 是数据文件路径
    • startLine 开始读取行,对于大文件需要分配处理时特别有用,
    • maxcount 读取最大行数,通过和 startLine 配合可以读取指定部分的数据,默认为全部读取

    lock 属性是一个同步锁,以便在多线程读取不出现冲突

  • getLine 方法,每次调用会返回一个元组,包含状态和得到的,数据
  • __del__ 方法会在对象销毁时调用,在此记录当前处理位置

这样就是可以应用在多线程程序中,承担读取待处理记录的任务了。

业务处理

例如核心处理程序如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
import time

def process(worker_id, datasource):
    count = 0
    while True:
        status, data = datasource.getLine()
        if status:
            print(">>> 线程[%d] 获得数据, 正在处理……" % worker_id)
            time.sleep(3) # 等待3秒模拟处理过程
            print(">>> 线程[%d] 处理数据 完成" % worker_id)
            count += 1
        else:
            break # 退出循环
    print(">>> 线程[%d] 结束, 共处理[%d]条数据" % (worker_id, count))
  • 参数 worker_id 是线程号,用于区分输出消息
  • 参数 datasourceDataSource 的实例,作为各线程的共享数据源
  • count 用于记录当前线程处理的记录数
  • 用一个死循环,驱动反复处理,直到读取没数据可读

组装

线程组装部分就也很简单:

1
2
3
4
5
6
7
8
9
10
11
12
13
import threading

def main():
    datasource = DataSource('data.txt') 
    workercount = 10 # 开启的线程数,注意:并非越多越快哦
    workers = []
    for i in range(workercount):
        worker = threading.Thread(target=process, args=(i+1, datasource))
        worker.start()
        workers.append(worker)
    
    for worker in workers:
        worker.join()
  • 先初始化一个 DataSource
  • workercount 为需要创建的线程数,在实际应用中可以通过配置或者参数提供,另外不是线程越多越好,一般设置为CPU核心数的两倍即可
  • threading.Thread 是线程类,可以实例化一个线程,target 参数是线程处理方法,这里就是前面定义的 process 方法,args 为提供给处理方法的参数
  • 线程的 start 方法是启动线程,因为创建不等于启动,start 是个异步方法,调用会瞬间完成
  • join 方法是等待线程处理完成,是同步方法,只有线程真正处理完成才会结束

扩展

通过这样的方式,帮我处理了很多实际的业务,比如爬取关键字信息,合并数据等等。

如果处理的数据不是文本文件,只要修改一下 DataSource 的 getLine 实现就可以了,比如数据源来自数据库等。

另外,上面的 DataSource 并非最优的,只是起到了规范读取接口,防止数据误读的作用,完全谈不上性能最优。

那么如何实现更优呢,这里提供一个思路就是,使用生产者消费者模型,利用 队列,以及 预读取 技术来实现更优的数据源类。

例如,DataSource 中,是逐行读取的,可以采用预读取,即提前读取一些数据,当线程需要数据时,先给出预读取的,等预读取的数据消费到一定量时,再异步读取一部分。

这样的好处是,各个线程不必等待 IO 时间(简单理解为从文件或者网络读取的等待时间)。

如何实现呢,可以了解一下队列(queue)的概念,Python 中提供了两种队列,同步队列 queue队列集

想想具体应该怎么做呢? 欢迎在留言区写下你的方法和建议。

总结

今天分享了一个在实际工作中用到的,多线程处理数据的例子,例子虽然简单,但很实用,已经帮助我处理了很多重要的工作。

谈一些感悟,Python 的应用并不仅限于数据分析、AI 领域等热门领域,更多的可以应用在于处理日常生活工作中,比如处理数据,代替手工操作,简单运算等。

我们知道,学会一个东西最好的方式是使用,对于 Python 技能来说,也是一样的,多在日常工作中用,多去解决实际问题,不用卯足了劲儿,憋个大招。

祝你在 Python 大道上越走越顺,比心!

Python Geek Tech wechat
欢迎订阅 Python 技术,这里分享关于 Python 的一切。